Introduction to CNS Drugs

- Cns drugs are among the first to be discovered by primitive humans
- Most widely used drugs to :-
- treat wide range of neurologic and psychiatric illnesses
- relieve pain
- Suppress nausea
- Reduce fever
- Increase the sense of wellbeing

- Cns drugs act on specific receptors that modulate synaptic transmission except general anesthetics and alcohol which have non specific action on membranes.
- These drugs are valuable tools for studying cns function
- They help in understanding pathophysiology of disease e.g. Schizophrenia.

Organisations of CNS

- Cns is composed of brain and spinal cord
- Neurons; human brain contains hundred billion neurons, these are electrically excitable cells that process and transmitt information via electro chemical process.
- Neurons are present as clusters i.e.nuclei
- OR they are present as layered structures i.e. Cerebellum and hippocampus
- Neuroglia;non neuronal support cells such as astrocytes,oligodentrocytes and microglia

CONTD

- Blood brain barrier: it is a protective functional separation of the circulatoing blood from extracellular fluid of CNS that limits the penetration of drug into the cns.
- Hydrophilic drugs can cross this barrier or else a specific transport system is required

Functions of CNS

- It is the master controlling and communicating system of the body
- It controls and coordinates all essential functions of the human body
- Sensory function; millions of sensory receptors are used to monitor changes occurring both inside and outside the body.(sensory input)
- Integrative function:nervous system processes and interprets sensory input
- Motor function; nervous system sends signals to muscles, glands and organs for an appropriate response

Neurotransmission by action potential

- Nerve signals are transmitted by action potential that are abrupt pulse like changes in membrane potential
- Action potential is divided into 3 phases:
- 1. Resting phase
- 2. Depolarisation phase
- 3. Repolarisation phase

Excitatory postsynaptic potentials and inhibitory post synaptic potentials are inputs that depolarize/hyperpolarize the postsynaptic cell bringing it closer/away from firing an action potential.

- EPSP are caused by opening of channels that are permeable to Na and K
- Neurotransmitters:Ach,dopamine,serotonin
- IPSP are caused by opening of chloride channels
- Neurotransmitters:GABA and Glycine

Neurotransmitters

- ► Acetylcholine
- Serotonin
- ► Norepinephrine
- ► Dopamine
- ► GABA
- ► Glutamate
- Most drugs that affect CNS act by altering some step in the neurotransmitters mediating the physiological and pathological response in neuropharmacology

Acetylcholine

- Myasthenia gravis is characterized by skeletal muscle weakness and fatigability resulting from reduced number if Ach receptors on muscle end plate (due to autoimmune antibodies against Ach receptors at neuromuscular junction).
- Diagnosis and treatment involves Acetylcholinestrase inhibitors (neostigmine)that prolongs the action of Ach at muscle end plate
- Ach esterase inhibitors (Tacrine)-Alzhimers Disease
- Anticholinergics(Benztropine)in Parkinson's Disease

Serotonin

- Involved in mood, depression and pain regulation.
- Activities modified by:
- Antidepressants
- CNS stimulants

Dopamine

- Involved in movement, attention, learning, motivation and reward
- Overactive dopamine:
- Schizophrenia (antipsychotics)
- ► Loss of dopamine :
- Parkinson's Disease (Levodopa)

GABA

- Main inhibitory neurotransmitter in CNS
- Anxiety disorders (Benzodiazepines)
- ► Huntingtons chorea that involve loss of neurons that utilize GABA.

Glutamate

- High concentration of glutamate lead to neuronal cell death by mechanisms that have only recently begun to be clarified. The cascade of events leading to neuronal death is thought to be triggered by excessive activation of NMDA or AMPA/kinase receptors allowing significant influx of calcium into neurons
- Due to their widespread distribution in CNS, gluatamtereceptors have become target for diverse therapeutic interventions. For example, a role for disordered glutamatergic transmission in the etiolgy of chronic neurodegenerative diseases and in schizophrenia has been postulated

TABLE 21-2 Summary of neurotransmitter pharmacology in the central nervous system.

•

	Anatomy	Receptor Subtypes and Preferred Agonists	Receptor Antagonists	Mechanism
Acetylcholine	Cell bodies at all levels;	Muscarinic (M ₁): muscarine	Pirenzepine, atropine	Excitatory: J in K' co
	long and short connections	Muscarinic (M ₂): muscarine, bethanechol	Atropine, methoctramine	Inhibitory: T K' conducting
	Motoneuron-Renshaw cell	Nicotinic: nicotine	Dihydro- β -erythroidine, α -bungarotoxin	Excitatory: 1 cation cont
Dopamine	Cell bodies at all levels; short, medium, and long connections	D ₁ : dihydrexidine	Phenothiazines	Inhibitory (?): † cAMp
		D ₂ : bromocriptine	Phenothiazines, butyrophenones	Inhibitory (presynaptic) L Cat Inhibitory (postsynaptic) T are
GABA	Supraspinal and spinal interneurons involved in pre- and postsynaptic inhibition	GABA _A : muscimol	Bicuculline, picrotoxin	Inhibitory: 1 CI conductance
		GABA _B : baclofen	2-OH saclofen	Inhibitory (presynaptic): ↓ Ca ¹⁺ conductance: Inhibitory (postsynaptic): ↑ K ⁺ conduct
Glutamate	Relay neurons at all levels and some interneurons	N-Methyl-D-aspartate (NMDA): NMDA	2-Amino-5- phosphonovalerate, dizocilpine	Excitatory: 1 cation conductance particularly Ca ²⁺
		AMPA: AMPA	NBQX	Excitatory: 1 cation conductance
		Kainate: kainic acid, domoic acid	ACET	Excitatory: T cation conductance
		Metabotropic: ACPD, quisqualate	MCPG	Inhibitory (presynaptic): 1 Ga ^{te} conductance, 1 cAMP; Excitatory:
Glycine	Spinal interneurons and some brain stem interneurons	Taurine, β-alanine	Strychnine	Inhibitory: TCF conductance
S-Hydroxytryptamine (serotonin)	Cell bodies in mid-brain and pons project to all levels	5-HT _{1A} : eptapirone	Metergoline, spiperone	Inhibitory: T K* conductance. ↓ cAMP
		5-HT _{2A} : LSD	Ketanserin	Excitatory: ↓ K° conductance.
		5-HT ₃ : 2-methyl-5-HT	Ondansetron	Excitatory: T cation conductance
		5-HT ₄ : cisapride	Piboserod	Excitations 1 K* conductance
Asternine	Cell bodies in pons and brain stem project to all levels	α ₁ : phenylephrine	Prazosin	Excitatory: J K* conductance. T IP ₃ , DAG
		α ₂ : clonidine	Yohimbine	Inhibitory (presynaptic): 1 G ^P conductance: Inhibitory: 1 K'
		β ₁ : isoproterenol, dobutamine	Atenolol, practolol	Excitatory: ↓ K* conductance.
	Cells in your 1	β ₂ : albuterol	Butoxamine	Inhibitory: may involve T in elec-
	hypothalamus	H ₁ : 2(<i>m</i> -fluorophenyl)- histamine	Mepyramine	Excitatory: 1 K* conductance
		H ₂ : dimaprit	Ranitidine	Excitatory: 1 K* conductance
		H3: R-tz-methyl-histamine	Thionesett	thibitory autoreceptors

	Anatomy	and Preferred Agonists	Receptor Antagonists	Mechanisms
ades	Cell bodies at all levels; cell and short connections	Mu: bendorphin	Naloxone	Inhibitory (presynaptic): $\downarrow Ca^{2*}$ conductance, $\downarrow CAMP$
	Jong Line	Delta: enkephalin	Naloxone	Inhibitory (postsynaptic): $\uparrow K^*$ conductance, $\downarrow cAMP$
		Kappa: dynorphin, salvinorin A	Naloxone	Inhibitory (postsynaptic): $\uparrow K^*$ conductance, $\downarrow cAMP$
	Cell bodies in hypothala-	OX1: orexin A	Suvorexant	Excitatory, glutamate co-release
	mus; project widely	OX ₂ : orexins A and B	Suvorexant	
	Primary sensory neurons, cell bodies at all levels; long and short connections	NK1: substance P methylester	Aprepitant	Excitatory: ↓ K* conductance, ↑ IP ₃ , DAG
		NK2: neurokinin A	Saredutant	Excitatory: $\downarrow K^*$ conductance, \uparrow IP ₃ , DAG
		NK3: neurokinin B	Osanetant	Excitatory: $\downarrow K^+$ conductance, $\uparrow IP_3$, DAG
noids	Widely distributed	CB1: anandamide, 2-arachidonyglycerol	Rimonabant	Inhibitory (presynaptic): $\downarrow Ca^{2+}$ conductance, $\downarrow cAMP$

central transmitters have been identified (see text).

ino-2-carboxyethyl)-3-(2-carboxy-5-phenylthiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione; ACPD, trans-1-amino-cyclopentyl-1,3-dicarboxylate; AMPA, droxy-5-methylisoxazole-4-propionate; cAMP, cyclic adenosine monophosphate; DAG, diacylglycerol; IP₃, inositol trisphosphate; LSD, lysergic acid diethylamide; h-carboxyphenylglycine; NBQX, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline.

Schematic diagram of a glutamate synapse. Glutamine is imported into the glutamatergic neuron (A) and converted into